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1 INTRODUCTION

As we move into the next century, a
become available with a variety of interesting
particular, hyperspectral sensors with both, a

wide range of new satellites and airborne sensors will
problems for data analysis and signal processing, In
large set of spatially contiguous spectra and a large set

of spectrally contiguous images will require new techniques that ideally would treat the spatial ~nd
spectral patterns in the data simultaneously. Resolving the significant spectral and spatial properties ass-
ociated to ecological processes and interactions is critical to successful interpretation of remote sensing data.

In hyperspectral images is desirable to classify images within the conventional frame of reference
of field and laboratory observations with methods that avoid intrinsic singular problems. In this
respect, spectral mixture analysis (SMA) has become a well established procedure for analyzing imaging
spectrometry data (Ustin et al., 1993; Ustin et al., 1994; Roberts et al., 1990; Sabol et al., 1990; Gamon
et al., 1993). SMA is a structured and integrated framework that simultaneously addresses the mixed-pixel
problem, calibration, and variations in lighting geometry and displays the results in terms of proportions of
endmembers that can be related easily to standard ecological observational units (e.g., cover). The general
form of the SMA equation for each band is expressed as:

N.

Rb = E Fem&m,b + &
emsl

(1)

where Rb is the radiance at band b, F~m is the fraction coefficient of each endmember Rem weighting their
radiance at band b, and Eb is an error term accounting for the unmodeled radiance in band b. Endmembers
are chosen to explain the spectrally distinct materials that form the convex hull of the spectral volume.
This approach works best when describing a few spectral types that, in various mixtures, can account for
most of the variance in an image data set. It does not mean, however, that it is possible to identify any
specific material, SMA works less well when the spectral features of interest are minor components of the
total variance, Ip fact, SMA has the disadvantage, at least for this application, of approximating. linearly
the natural (non-linear) complexity of materials represented by the mixture of endmembers. This produces
a non-unique mixing model to identify and quantify materials that occur at the sub-pixel scale (Sabol
et al., 1992). In summary, the technique is relatively’ insensitive to subtle absorption features, and produces
significant quantification errors due to endmember variability from linear and nonlinear mixtures (e.g. from
scattering, and lighting geometry) in a pixel.

Boardman (Boardman, 1994), used a geometric approach based on the convex hull ofthespectra
projected into the mixing space to find a solution that minimized spectral variation for some features
while accentuating others. His technique is still a SMA approach that automatically derives tile numlmr of
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endmembcrs and estimates their pure spectral composition (Boardman, 1994), but it is suboptimal in the
presence of multiple mixing. More recently, Harsanyi and Chang (Harsanyi and Chang, 1994) developed
a mixture technique that rejects undesired interference by performing an orthogonal subspace projection
(OSP), This technique simultaneously reduces data volume and emphasizes the presence of a signature
of interest, Bolster et al. (Bolster et al., 1996) seeking the same goals, instead use the first difference
partial least squares regression (PLS) that is based on a singular value decomposition (SVD) of the
whole spectrum data set. SVD reduces noise-related interference, common in a first difference analysis,
and reduces the analysis into a smaller set of independent variables. Both, OSP and PLS, achieve good
performance in detecting material abundances at low levels for a particular scenario by incorporating the
varia~l]ity of the material abundance into the more important independent variables (factors) but they are
unable to extend the application to other scenarios. In order to develop a directed search methodology
to locate the desired robustness (analytic) property, Smith et al. (Smith et al., 1994) proposed a revised
SMA technique, that they termed Foreground/Background Analysis (FBA). Hatsanyi’s approach shares
the properties of orthogonal space projection and a similar rationale with the FBA technique. In this
technique, spectral measurements are divided in two groups of foreground and background spectra that
comprise a selected subset of spectra which emphasizes the presence of a signature of interest. In defining
both groups they do not include intermediate mixtures between foreground and background. In that
way, FBA vectors should be sensitive to minor sources of foreground spectral variation and insensitive
to background spectral variation. The goal of FBA is to project spectral variation along the most
relevant axis of variance that maximizes the spectral differences between the foreground and background,
while minimizing spectral variation within each group. Their FBA approach defines a weighting vector
w = (WI, W2, .0., WNb), with components Wbat each channel b = 1, . . . . JVb, such that all foreground
spectral vectors, Rf = (Rj, 1, Rj,2, . . . . Rt,N~), are projected to 1 while background spectral vectors, R~,
to 0, This property is defined by the FBA system of equations:

~tu~,&~ + T = 1 foreground (2)
J b=l

and
Nb

x
WB,b&,b + T = O background

b=1

where T provides a translation that is typically required to optimize the FBA system. As stated
FBA is in essence another linear classifier of the spectra that can be applied to identify low and high
material abundances. Pinz6n et al. (Pinz6n et al., 1994; Pinz6n et al., 1995) modified the FBA linear
system to project a subset of spectra into relevant axis of continuous property variation, like chemical content.

In this paper, we present a supervised classification technique that discriminates broad categories
of materials of the surface in terms of ground truth features, such as vegetation characteristics, and soil
properties, The actual relationships between these two ecological units are often difficult to resolve with
respect to understanding which of many potential interacting factors is significant in a particular locality.
We decompose the interaction between the spatial and spectral domains associated to these units by
using wavelet tools and a hierarchical foreground background analysis (HFBA). Wavelets provide spatial
coherence information that should allow us to generalize the results from the spectral features extracted by
HFBA.

2 METHODS

For most purposes the problem of supervised classification can be formulated as follows: given an
inpulspaceX and a desired property in an output space Y’,therek an unknown (functional) relationship,
F, between .Y and Y that is represented by a subset of m samples, from which onc wants to guess the



X - Y relationship. In general, F takes the form o~ a deterministic function + noise: One is given the
training set of m samples and the guess functional F, the problcm is to guess, using F, what output space
value, J, is the most appropriate for a given input z. The precise meaning of “appropriate” can be difficult,
and is measured through loss functions, A popular choice is the quadratic error function:

t(x, Y) = jj(F(Zj)-~i)2 (3)
i=l

The loss function and the way it is minimized determine the method used and its ability to generalize,
Under this definition the problem of supervised classification has been identified by many other names,
such as inductive inference, regression, statistical inference, model inversion, etc.

2.1 HFBA

Pinz6n et al. (Pinz6n et al,, ress; Pinz6n, 1996) modified the FBA system to project a subset of
spectra into the most relevant axis of variation of a desired property. In this case, the system of equations
is given by

Nb

~Wb%b + T = q (4)
b=1

That is, the reflectance matrix R times the FBA weighting vector w is equal to the desired ground
characteristic C. The goal of this system is to relate spectral and ground variation along the most relevant
axis of spectral variance. The general form of the FBA system has the form of a generic Finite Impulse
Response (FIR) filter equation in time domain (Smith et aL, 1996):

where f, is the sampling frequency and h(k) are the Fourier series coefficientsof the frequency response of
the FIR filter, If(f). Therefore, solving the FBA system plays similar role as the design process of a FIR filter.

To improve the detection of minor sources of spectral variation, we can apply the process iteratively
obtaining a system of equations that works at different levels of accuracy. We stop at the level of the system
noise. Solving each equation in the iteration system is the so called hierarchical FBA technique (HFBA)
which derives sequentially a series of FBA vectors, with different general discriminating features. In essence,
the HFBA system is an iteratively decimation process which extracts details in each of the levels,

The power of the HFBA method becomes apparent as we begin to catalogue more precisely
the performance of the SVD in energy-packing and avoidance of overfitting problems due to its stability
properties, First, r, the rank or dimension of the matrix R, could be estimated by examinating the number
of non-zero singular values (Golub and Van Loan, 1989). Second, the decomposition R = UZV* provide
an approximation of the matrix R by a sum of rank-one matrices (Golub and Van Loan, 1989). That is,

r

R = E“jujvj” (5)
j=l

Here, r is the rank of the matrix R, and aj its singular values, Uj, and “j the left and right singular
columnvectorsrespectively.This is easily shown by noticing that X can be written as a sum of r matrices
x = ~ j = lr~j, where each Sj has just one nonzero entry aj . Then Equation 5 follows. One can find
a very large number of different representations of R as a sum of rank-one matrices. However, Equation
5 represents the best approximation of R. That means that the hyper-ellipsoid with principal axis of



length ~j’s, providcsavcry important property: theq-th partial sumcaptures asmuchof the detail of
R as possible (Golub and Van Loan, 1989), That is, the best least squared approximation of a matrix R
by matrices of lower rank q (q < r), is given by Rq = ~~=1 ~jtijt~j *. Third, when solving the FBA
equations at each level with spectral matrices R close to rank-deficient, it turns out that most of the
standard algorithms used to solve such systems have ill conditioned stability properties. In such cases, SVD
is a good stable alternative (Golub and Van Loan, 1989). Computationally, SVD is more expensive than
the standard methods, but more accurate and stable. This is the principle advantage of using SVD in the
solution of the FBA equations: a stable method to process hyperspectral (rank-deficient) matrices R.

2.2 Wavelets

Wavelets are mathematical functions that split data (image or signal) into different scale
components that provide the best approximation at each scale. The wavelet analysis starts with a function
+(z), called mother wavelet that is well localized and oscillating. By localization, we mean +(s) decreases
rapidly to zero as z tends to infinity. Oscillating requires that 16behaves as a wave, that is, integrals of ~
and its firsts k moments be zero.

In summary, a wavelet decomposition can be seen as an application of a pair of complemen-
tary low and high pass filters, H and G respectively. Thus, a generic wavelet transform is depicted in Figure 1.
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Figure 1. Discrete generic wavelet transform. From (Wickerhauser, 1994).

The properties of the wavelets arc determined by the properties of the flltcrs 11and G, and by the



properties of the signal being analyzed. The construction of wavelets then begins by designing the filters
that could be a basis of the space we want to transform. To lead to high compression and get coherent
information we use a coiflets with 4 vanishing moments, avoiding at the same time to include noise into the
estimated generalization functional, ~.

3 Results

We present two applications of the HFBA: 1) retrieval of biochemical properties using laboratory
spectra and chemical content of fresh leaves samples, and 2) discrimination of soil in the Santa Monica
Mountains.

3.1 Retrieva! of biochemical properties

For this application, we have fresh leaf samples from 3 different sites: from Santa Monica
Mountains, CA, from Joint Research Center, Ispra, Italy, and from J~per Ridge Biological Preserve at
Stanford University. The samples are botanically very heterogeneous, specially those in JRC. We have
trained each HFBA vector with 20% of the samples from JRC and validated the results with the remaining
data set, Three levels of detection were obtain, the first discriminates monocots from dicots, the second
low water content from high water content and finally the actual chemical content was predicted (here we
present nitrogen and water results). Monocot and dicot samples are identified by their spectral features in
the visible region, where monocots are brighter due to their higher chlorophyll (a and b) content. That
property is precisely the characteristic manifested in the HFBA vector, Figure 2(a). Similarly, low and high
water contents are spectrally discriminated by the main water absorption features at 1400 nm and 1900 nm
and their interaction in the blue visible region, Figure 2(b),
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Figure 2. Classification step: (a) monocots vs dicots (b) high vs low water content

The statistics of the prediction indicates the good performance of HFBA at the laboratory
level: regressions of 0.71 and 0.75 with good fit of the distribution of actual data, Figure 3.
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Figure 3. Retrieval of biochemical properties: (a) nitrogen concentration (b) water content.

3.2 Discrimination of Soil in the Santa Monica Mountains

We have used two levels of HFBA to discriminate soils and soil properties from two valleys in the
Santa Monica Mountains (Serrano and La Jolla) using AVIRIS data. The region is highly susceptible to
erosion and wildfires due to the xeric soil moisture regime typical of Mediterranean climates, as well the
steep terrain, The combination of all these factors markedly increases heterogeneity in the distribution

I of soil properties, Large coverage and sufficient spatial resolution are required to understand soil pattern ‘
differences. AVIRIS satisfies these two requirements. The classification vector discriminates soils with hieli“
organic matter from those with low organic matter (see Figure 4). Ninety four percent of the samples were
correctly classified. The other six percent show intermediate organic matter contents.
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Figure 4.HFBA classificationvector.



It can be obscrvmf that (hc t.ux)spwlral arms tllos[ ilt)j)rjrf aIII for tlis(”ritllillt~l.i{)t~ arc Iwtwcen

1000nm and 2200nm (OH-AL and Mg-oll al)sorl)t,iolls). ‘1’1)(’cllarac((jrist,ic of 1IIC vector IM!lWCCII 600 and
800 nm also could bc used to detect veg(~tiltiol] aIId it will work Iikc XIJJ’I for t his pllrposc. ‘1’IIC first
image in Figure 5 shows the HFBA spatial distribution. After ii[)l)l~i]lg coiflct tvavclct.s (Figure 5, second
row), the spatial coherence is manifested and this allows ]Ioisc reduction and improves the pcrforlnance of
HFBA vectors, The final classification allows a better interpret.ation of the ecological processes involved.
Image classification follows known spatial characteristics, Finally, Figure 6 sholvs the organic matter
spatial distribution from AVIRIS data predicted by HFBA and coiflct noise reduction. High values are
concentrated near ridges of the mountains as expected, It can be observed that the pixels mapped as
La Jolla soils in the classification image also show high content oforganic matter which agrees with our
laboratory data.
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Figure 5,
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(a) HFBA classification and (b) spatial coherence nmnfested after coifkt noise recfuction.
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Figure 6. (a) HFBA classification and (b) spatial coherence manfested after coiflet noise reduction,

4 Conclusions

A new robust approach for the detection and classification of materials was developed and tested.
The technique uses a comb~nation of an iterative hierarchical application of a modified FBA technique
and coitle noise reduction to detect functional relationships between spectra and ground truth features at
different levels of accuracy.

The power of the HFBA technique is based on the attractive properties of the SVD transform in
information packing and avoidance of overfitting problems by minimizing extraneous noise in the analysis.
The technique was trained over laboratory data and applied to AVIRIS images. It is clear from the above
experiments that the proposed approach is promising.

By the iterative hierarchical procedure we force the system to account for important non-linear
dependencies directly related to spectral scaling. In that respect, one of the strong points of the
proposed method is that we can group together samples with similar anatomical properties manifested
spectrally. However, if the distribution of these properties is continuous, samples near the boundaries of
the discriminant regions could be misclassified weakening the helpfulness of the classification step. In
particular, as spatial variation of vegetation is high, the selection of a training set that explains the mixing

presented at different spatial scales is critical. This process seems to be a key factor for understanding the
good performance of HFBA dealing with sub-pixel scaling issues in this application, although HFBA was
not properly equipped to deal directly with these spatial issues. There are more appropriate image analysis
methodologies concerning spatial scaling problems such aa wavelet transforms. The wavelct decomposition
gives a better representation of spatial distribution (at different scales) of the data, ald especially a better



description of the properties of sampks near to discrimirmnt boundaries. Clearly, these points have to bc
further investigated to identify the relationship bctwccn spatial-spectral scales,

As a conclusion, we consider that a combination of HFBA and wavelets or other spatial scaling
transforms has significant potential and certainly deserves further investigation. There are many aspects
for the discrimination among materials that still need investigation, The aspects we have in mind are aptly
illustrated by Yves Meyer in his book Wavelets: algorithms and applications (Meyer, 1993): “It is notable
that Mandelbrot used the word describe and not ezplainor interpret.We are going to follow him in this,
ostensibly, very modest approach. This is our answer to the problem about the objectives of the choices:
Wavelets, whether they are of the time-scale or time-frequency type, will not help us to explain scientific

facts, but they will serve to describe the reality around us, whether or not it is scientific. Our task is to
optimize the description. This means that we must make the best use of the resources allocated to us to
obtain the most precise possible description.”
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MAPPING THE DISTRIBUTION OF WILDFIRE FUELS USING AVIRIS IN THE SANTA
MONICA MOUNTAINS
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1 Introduction

Catastrophicwildfires,such as the 1990 Painted Cave Fire in Santa Barbara or Oakland fire of
1991, attest to the destructive potential of fire in the wildlandhrban interface. For example, during the
Painted Cpve Fire, 673 structures were consumed over a period of only six hours at an estimated cost of
250 million dollars (Gomes et al., 1993). One of the primary sources of fuels is chaparral, which consists of
plant species that are adapted to frequent fires and may actually promote its ignition and spread of through
volatile organic compounds in foliage (Philpot, 1977). As one of the most widely distributed plant
communities in Southern California (Weislander and Gleason, 1954), and one of the most common
vegetation types along the wildland urban interface, chaparral represents one of the greatest sources of
wildfire hazard in the region,

An ongoing NASA funded research project was initiated in 1994 to study the potential of AVIRIS
for mapping wildfue fuel properties in Southern California chaparral. The project was initiated in the Santa
Monica Mountains, an east-west trending range in western Los Angeles County that has experienced
extiemely high fire frequencies over the past 70 years (Ol%ce of Emergency Services, 1995). The Santa
Monica Mountains were selected because they exemplify many of the problems facing the southwest,
forrrting a complex mosaic of land ownership intermixed with a diversity of chaparral age classes and fuel
loads, Furthermore, the area has a wide diversity of,chaparral community types and a rich background in
supporting geographic information including fire history, soils and topography. Recent fwes in the Santa
Monica Mountains, including several in 1993 and the Calabasas fire of 1996 attest to the active tire regime
present in the area. The long term objectives of this project are to improve existing maps of wildland fuel
properties in the area, link AVIRIS derived products to fuel models under development for the region, then
predict fire hazard through models that simulate fire spread. In this paper, we describe the AVIRIS derived
products we are developing to map wildland fuels.

2 Background

A number of studies have focused on fire hazard assessment (Cosentino et al., 1981; Burgan and
Shasby, 1984; Yool et al,, 1985; Chuvieco and Congalton, 1989 and Stow et al., 1993; Clarke et al., 1994).

. In general, remote sensing has been used to classify vegetation into fuel classes then combined through a
GIS with collateral information such as slope, aspect, elevation and fire history to assess hazard (Cosentino
et al,, 1981; Burgan and Shasby, 1984; Yool et al., 1985; Chuvieco and Congalton, 1989 and Stow et al.,
1993). For example, Chuvieco and Congalton (1989) used Landsat Thematic Mapper data to classify
vegetation by fuel class then used elevation, slope, aspect and proximity to roads to generate a fire hazards
index. Burgan and Shasby (1984) merged Landsat MSS, aerial photography and digital elevation data to
map seven fuel classes near Missoula Montana. Fuel classes were assigned to a National Fire Danger
Rating (NFDR) fuel model to calculate the Energy Release Component (ERC) (heat energy/unit mea) for
each image element, which was then used as a measure of hazard. Changes in fuel moisture were modeled
from digital topography (e.g. insolation) and weather data to predict changes in moisture content. Cohen
(1991 ) used laboratory reflectance data of several chaparral dominants to monitor spectral changes in
foliage through a growth season. He evaluated the tasseled cap as a means of monitoring seasonal drying in
vegetation as changes in greenness, brightness and wetness. Stow et al., (1993) extended the use of the
tasseled cap to analyze a pair of TM scenes from the beginning and end of the 1986-1987 growing season
in Southern California. Differences were stratified by vegetation community type, stand uge (fire history),



and slope and aspect. They found that end of season changes in greenness for mixed chaparral varied with
stand age and matched field measures of total and live standing biomass, although seasonal changes in
illumination were the most dominant differences.

Imaging spectrometry, through improved characterization of the chemistry and physical properties
of natural surfaces and atmospheres has the potential of significantly improving our ability to map fuels and
predict fire hazard. Important fuels properties and associated remotely sensed measures are summarized in
Table 1. Important AVIRIS capabilities include: 1) the ability to retrieve apparent surface reflectance in a
spatially variable atmosphere, providing temporally robust measures of surface properties; 2) canopy
liquid water retrievals, providing direct estimates of moisture content and; 3) improved classification of
vegetation, When combined with spectral mixture models to estimate the areal proportions of live and dead
crown components, these tools provide a new, unique approach to fire hazard assessment. The importance
of collateral information (e.g. fire history, digital topography) for fire hazard assessment is clear: canopy
depth, stand age and surface winds are all parameters of critical importance to tire modeling, yet cannot be
derived from remote sensing. Forthisreason, GIS is a significant component of our research effort.
Important GIS layers are also described in Table 1,

..

Table 1. Important fuel properties
Fuel Protiertv Remotelv Sensed Measure
Total Fuel Load (kg/ha)

Live fuels (Green leaves, live stems) NDVI, Green Vegetation Fraction* , Liquid Water
Dead fuels (litter, stems, twigs) Non-Photosynthetic Vegetation (NPV)*

I

Vertical Structure of Fuels \ Shade Fraction*

Percent Moisture Content
Live Equivalent Liquid Water Thickness**
Dead na

Species Composition Classification
Ignition Properties
Indirect Measures of Above

Collateral Information (GIS)
Fire history (Stand age), soils (Site quality) , DEM (Insolation, moisture, site quality)
* From Spectral Mixture Analysis (SMA), Adams et al., (1993); Roberts et al,, (1993)
** Green et al,, (1993); Roberts et al., (1997a).

3 Methods

3.1 Data
. In order to map fuels and monitor seasonal and interannual changes in vegetation, seasonal pairs

of AVIRIS data were acquired in the spring and fall of 1994, 1995 and 1997. Due to poor atmospheric
conditions during the spring of 1996, no AVIRIS scenes were acquired at that time. However, AVIRIS data
were acquired on 17 and 23 october, 1996, before and after the Calabasas fke. In order to cover the entire
range, at least two flight lines were flown with each date, one due east and one due west, A minimum of 17
scenes were required to cover the entire range for each date.

Supporting field data for image analysis and accuracy assessment were acquired during several
field campaigns in 1995, 1996 and 1997. Field data included spectral reflectance measurements of a
homogeneous ground target at Zuma beach during each AVIRIS overpass using an Analytical Spectral
Devices (ASD) full range instrument on loan from JPL, Additional spectral data were acquired to develop a
regional] y specific spectral library for the area (Roberts et al,, 1997b) consisting of soils and plant spectra
of all chaparral and non-chaparral dominants during the spring and fall (see Gardner, 1997 and Ustin et al.,
1998). Additional leaf and branch spectra were collected in the field for later measurement using a Cary-5
laboratory spectrometer at UC Davis. Data for accuracy assessment included close to 300 polygons
covering all dominant natural cover types in the region, Data recorded for each polygon included percent
cover and species composition. Initial accuracy assessment is summarized in Gardner ( 1997).



3.2 AVIRIS Processing
Scenes acquired in fall 1994, spring 1995, both dates in 1996 and spring 1997 were processed to

retrieve surface reflectance, map column water vapor and equivalent liquid water thickness using the
approach of Green et al., (1993). Once processed to apparent reflectance, spectral fractions for green
vegetation , non-photosynthetic vegetation, soils and shade were mapped using simple spectral mixture
analysis and reference endmembers (Adams et al., 1993; Roberts et al., 1993, 1997c; Ustin et al., 1998).
Reference endmembers for the simple models were selected using the approach described by Smith et al.
(1990) and Roberts et al.,(1997c) from regionally specific spectral libraries developed for the Santa
Monica Mountains. During this process, three sets of three endmember models (GV-NPV-shade, GV-Soil-
Shade, NPV-Soil-Shade) were generated for each image, then compared to select the model that provided
the minimum RMS error and generated physically reasonable fractions for each endmember. A similar
approach, based on minimum RMS is described by Painter et al., (1998).

Species maps were generated for each image using Multiple Endmember Spectral Mixture
Analysis (MESMA: Roberts et al., 1998), using the modified approach described by Gardner (1997) and
Roberts et al,, ( 1997b). MESMA differs from simple spectral mixture models in that it allows the number
and types.of endmembers to vary on a per-pixel basis, In this manner, it overcomes some of the errors
inherent in simple mixture models (e.g., fraction errors, endmember ambiguity), while significantly
increasing the number of materials that can be mapped as distinct from their spectra. To date, MESMA has
been applied to map snow grain size and snow covered area (Painter et al., 1997), semi-arid vegetation
(Okin et al., 1998) and chaparral (Gardner, 1997; Roberts et al., 1997b;1998) and is currently being applied
to boreal forest and temperate rain forest, Vegetation maps developed using MESMA are currently limited
to fall 1994 and fall 1996 because the spring library is still being organized. All AVIRIS products,
including maps of column water vapor, liquid water, spectral fractions and vegetation dominants were
coregistered to a georeferenced SPOT Image available from the U.C. Santa Barbara Map and Imagery
Library, resampled to a 20 meter resolution,

3.3 GIS Layers
GIS layers developed for the study included a digital elevation model, fire history from 1925 to

! 1996 and 1930s vegetation (Weislander and Gleason, 1954; OffIce of Emergency Services, 1995 ). Fire
history maps, developed by the Los Angeles County Fire Department, were processed to develop maps
showing the age of the last fire and fire frequency since 1925.

4 Results
A summary of the data developed for this project is shown in Table 2. Fully georeferenced

products are available for the entire range (17+ scenes) for fall 1994, spring 1995, fall 1996 (pre and post
Calabasas fire) and spring 1997. Spectral fractions have been generated for all of the images described.
MESMA-derived vegetation maps have only been generated for fall images. Fuels, destructively harvested
by the USDA forest service in 1995,have been located in the GIS. These are currently being used to
develop a model that relates AVIRIS fraction images, vegetation cover and liquid water to fuels sampled on
the ground. A specific, near-term objective has been to develop fuels layers for the Calabasas area before

. and after the fire in 1996, and use these data as inputs into a fire-spread model to simulate the Calabasas
fire. The fire spread simulation will be conducted by Dr. Jim Bossert, of Los Alamos National Laboratory.

Table 2. AVIRIS products. Products are labeled as none, incomplete (inc) or complete (corn). Incomplete
means some, but not all scenes have been processed. Complete processing covers the entire range.

Date Reftectcnce Retrieval Spectral Fractions I MESMA Georeferencing
Liquid Water Water Vapor GV NPV Soil Shade

940411 Inc lnc None None None None None None
941019 Corn ~ Corn ‘ Corn, Corn ~~ Corn ~~ Corn Corn Corn ‘ .’
950509 Corn Corn coal Corn Corn ~~.. Corn Corn Corn ~ ~~~
950526 Inc Inc None Norm None None None None

951012 Inc Inc None None None None None None
95I020 Inc Inc None Nnne None None None None

951026 Inc Inc None None None None None None
%1017 Corn Corn Corn Corn Corn Corn Corn Corn
961023 Corn Corn Corn Com Corn Corn Corn Corn

.970407 Corn Corn Corn Corn Corn Corn Corn Corn
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Some of the potential of liquid water and spectral fractions as indicators of fire hazard are
illustrated for the Calabasas fire (Figs. 1& 2). Liquid water was mapped for 17 October and 23 October,
several days before and after the fire (Fig. 1). The fire began in the north-central portion of the region, in an
area dominated by grasslands and coastal sagebrush, mapped as having low liquid water (Fig. 1). It spread
rapidly southwards until it reach the vicinity of Malibu Canyon where it slowed significantly, then crossed
through rugged terrain and moved rapidly to the coast. Once at the coast it burned west and northwest,
burning chaparral to the northwest and coastal sagescrub and grasslands to the west. On the post-fire liquid
Waterimage(Fig. 1, right frame), the fire scar is clearly indicated by a region of low liquid water due to the
removal of most green vegetation. Spectral fractions of the same region (Fig. 2) provide more detailed
information regarding surface cover before and after the fire. For example, the region where the fire started
(northeast portion of image) was modeled as consisting of high fractions of NPV and low fractions of GV
and soil (Fig 2:, a to c), Once it progressed to the coast, the fire was restricted primarily to regions mapped
as having low GV and higher NW fractions, a noteworthy exception being the central portion of the area,
which consisted of hard chaparral and had higher GV and lower NPV fractions. The post-fire image shows
the fire+$’caras consisting primarily of soil, which had replaced either GV or NPV depending on the
vegetation type.

t“

5 Summary

AVIRIS has the potential of significantly improving our capability to assess fire hazard through
improved mapping of vegetation and fuels properties. Critical AVIRIS capabilities include robust retrieval
of apparent surface reflectance, the capability of mapping canopy liquid water and improved classification
of vegetation. Spectral mixture analysis, applied to reflectance data using reference end members adds
additional re!evant information including estimates of green (live) and non-photosynthetic fuels. In this
paper, we describe the data layers we have been developing from AVIRIS which will be used to assess fire
hazard and simulate fire spread in the Santa Monica Mountains. Near-term objectives of this project
include integrating AVIRIS products with field measures of wildland fuels, then incorporation of spatially
explicit maps of fuels in a fire spread model. One key objective will be to test the sensitivity of fire spread
simulations to fuels using the pre and post Calabasas AVIRIS data sets.
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Figure 1. Equivalent liquid water images of the Calabasasarea beforeand afterthe Calabasas fire.



Figure 2. Fraction images for NPV, GV, and Soil for the Calabasas area before and after the fire.
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1 Introduction

Leaf &ea Index (LAI) is one of the most commonlyemployedbiophysicalparametersused to
charadtenzevegetationcanopiesand scaleleaf physiologicalprocessesto larger scales.For example,LAI
is a criticalparameterused in regionalscaleestimates of evapotranspiration,photosynthesis,prirrwy
productivity,and carboncycling (Runninget al., 1989;Dormanand Sellers, 1989;Potter et al., 1993). LAI
is typically estimated using ratio-based techniques, such as the Normrdized Difference Vegetation Index
(NDVI: e.g. Tucker 1979; Asrar et al. 1989; Sellers 1985; 1987). The physical basis behind this
relationship depends on the high spectral contrast between scattered near-irdlared (NIR) and absorbed red
radiation in canopies, As the number of leaves present in a canopy increases over a unit area, NIR
reflectance increases, while red reflectance decreases, resulting in an increase in the ratio. Through time
series and image compositing, NDVI provides an additional temporal measure of how these parameters
change, providing a means to monitor fluxes and productivity (Tucker et al., 1983), NDVI, while highly
successful for agriculture and grassland ecosystems has been found to be less successful in evergreen
chaparral and forested ecosystems (Badhwar et al., 1986; Gamon et al., 1993; Hall et al., 1995). Typically,
the relationship between NDVI and LAI becomes progressively more asymptotic at LAI values above three
(Sellers, 1985), although linear relationships have been obsetved in conifers at LAIs as high as 13 for some
conifers (Sparmer et al., 1990).

In this paper, we explore an alternative approach for estimating LAI for remotely sensed data from
AVIRIS based on estimates of canopy liquid water. Our pnmaxy objective is to test the hypothesis that the
depth of the liquid water bands expressed in canopy reflectance spectra at 960, 1200, 1400 and 1900 nm
increases with increasing LAI in canopies. This study builds off of work by Roberts et al, (1997), in which
liquid water was shown to increase following a gradient of increasing LAI ranging from grasslands to
coniferous forests. In that study, it was observed that forests, which showed little variation in NDVI,
showed sigrdflcant variation in liquid water. In order to test this hypothesis, we analyzed field spectra
measured over Populus shrubs of known LAI and monitored changes in liquid water in young Populus
standsas they aged over a four year time span. The study was conducted in south-central Washingto~ in a
clonal Populus fiber farm owned and operated by Boise-Cascade near the town of Wallula.

.
2 Background

2.1 Estimation of Liquid Water in Canopies
Green et al,, (1991,1993) developed techniques for retrievingapparentsurface reflectance,

mapping column water vapor and liquid water ffom AVTRISusing a modified version of Modtran mdiative
transfer code. In order to separate water vapor in the atmosphere from liquid water in the landscape, Green
et al,, (1993) incorporated a simple model for the expression of liquid water in a reflectance spectrum. This
model makes the assumption that the depth of the liquid water band across the 865 to 1035 run region can
be approximated using Beer-Lamberts law for exponential extinction in an absorbing or scattering medium,
Based on this model, the depth of the water band will vary as a function of the strength of the absorber
(described by the absorption coefficient for liquid water) and the pathlength of light within an absorbin~
scattering element. While this simple model was originally developed primarily to improve water vapor
retrievals from AVIRIS, recent studies by Roberts et al,, (1997) and Ustin et al. (199S) have shown that the
liquid water maps that result may be one of the most products available from AVIRIS,



In order to simulate AVIRIS liquid water retrievals in field spectra a Beer-lambert model was
developed that duplicates the approach used in AVJRIS. This approach is shown schematically in Figure 1.
In the upper two frames, two formations of the Beer-Lambert law are presente~ one that models light
attenuated as it passes through an absorbing (or scattering) medium, and one in which paxl of the light is
partially blocked. In the example shown on the left, the natural log of transmittance (or reflectance) can be
modeled as linear function that passes through the origin and has a slope equal to the pathlength, Addition
of a blocking factor adds an intercept to the equation. In the central frames, two leaf reflectance spectra are
shown on the left, with a plot of the absorption coefficient of liquid water on the right The lowest frame
shows a plot of ln( R ) against the absorption coefficient for two wavelength regions. Liquid water
thickness would be reported as the slope of the line,

Methodology: Modified Beer-Lambert
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3 Methods

3.1 Study Site
The study \vas conducted in the vicinity of Wallula. Washington (46° 4“ N, 118°54’ W), located

several km southeast of the confluence of the Snake and Columbia Rivers. The area has a semi-ari~ steppe
climate, characterized by minimum monthly temperatures slightly below freezing between the months of
December and February and peak summer temperatures above 30° C in July and August (Environmental
DataSerttice, 1994:1996). Total annual precipitation ranges between 200 and 350 mm, falling primarily
between November and February. but exlending through all months except July and August. The dominant
natural vegetation is sagebrush scrub (,4rtemisia lridentafa), although the region has extensive agricultural
development growing potatoes, co~ and other agricultural crops. Field research and imageanalysis
concentrated at the Boise-Cascade Walhda fiber f- a plantation consisting primarily of Populus
trichocarpa,nigraand deltoidesclones (Fig. 2). Populusclones in the area begin to leaf out in April, reach
peak leaf displayby June then senesceby October,varying slightlyeachyear dependingon annual
tempe,mture.Spectraldifferencesbetweentrichocarpa-deltoides(TxD)and deltoides-nigra (DXN) can be
attributed primmily to architectural differences between TxD with more horizontally oriented leaves and
DxN ti,$h morevertical leaf displays(Robertset al., 1995;Hielmanet al., 1996).

3.2 Field Study
The field study was designed to test the LAI/liquid water hypothesis using field spectraof DxN

clones at the Wallula fiber farm.Field work was conducted at the farm between July 20th and July 25th,
1997 duringthe time of an AVIRIS overflight. Seventy six young stump sproutingplants, ranging between
10 and 60 cm in height were located and flagged in a 6 year old stand thathad been recently hamested,
Reflectance spectrawere measured of each plant using an Analytical SpectralDevices (ASD) full range
instrumenton loan from JPL (Analytical SpectralDevices, Boulder, CO). Field spectrawere standardized
to spectraJon(Labsphere, Inc. North SuttoL NH) measured at approximately 10 minute intervals. At least
three replicates were measured for each plant. One to four sets of spectra were measured at each plant
depending on the size of the shrubat a height of 0.5 m above the canopies.\

For destructive harvesting the plants were stratified into five height classes: <19 ~ 20-29 cm,
30-37 cm 38-48 cm and 48-60 cm, Five plants were randomly sampled from each height class for detailed
analysis. Measurements of plant height, and diameteralong the major and minor a..es were collected for
each of the sampled plants for later determinationof ground areaand plantvolume. In orderto determine
leaf area of each of the sample plants, every stem was destructively hamested then measured with calipers
to determine stem diameter. In orderto develop a linear equation that relates leaf area to stem diameter, one
of eve~ ten stems was stored in a plastic bag and cooled for later laboratoryanalysis, In the laboratory,
leaves from each stem were harvested, measuredfor leaf areathen regressed against stem diameter. Once
this relationship hadbeen developed, it was combined with the shrub stem datato calculate total leaf area
for each shrub,then divided by the areal projection of each shrub (in meters) to determine LAI. An
example for plant 6-7 (row 6, 7th plant), which consisted of 353 stems is shown in Figure 3.

Liquid water was determined from leaf spectra using the approachdeseribed in the background.
section, modified to account for differences between AVIRIS spectra and the field spectra. The most
notable difference occurs in the transitionbetween the VNIR and SWIR1 detectors in the instrumentused
in the field, Instrumental problems between the VNIR (350-1000 nm) and SWDU (1000-1800 nm) regions,
tend to create a discontinuity between the two detectors in reflectance spectra (Fig. 1). As a result, it was
not possible to apply the same wavelength range as used in AVIRIS to the field spectra. As a solutiom the
liquid water fits were restricted to the long-wavelength end of the liquid water band, ranging from 1002-
1068 run rather than the 865 to 1065 nm region used in AVHUS. To test whether AVIRIS and ASD data
gave similar results in a wavelength region that did not have instrumental artifacts, fits were also extended
to the 1132-1200nm and applied to both field and AVIRIS reflectance spectra.



0.6
— Dxhla {5 yrs)

0,5 ~ TxD (5 yrs)

‘A

— Parking Lot
@G.4
u — Sage Scrub

,“’$%-------
#—@— A --”---% .. .

.

400 900 1400 1900 2400
Wavelength (rim)

2 km

Aug12,1996

Figure 2, Index map of Walluia fiber farm, Reflectance spectra are displayed for DXN, TXD clones, sage
scrub and a parking lot, which was used as a temporally invariant target for calibration.



.,
L

.,

(

[0;;
[1,2)

~ [2,3)

E [3,4)
& [4,5)

~ [5,6)
: [6,7)

E [7,8)
# [8,9)

[9,10)
[10,11)

>=11

.

gj 1000
E
: 800

$ 600

200

0
02468 10 12

Stem Diameter (mm)

Stem Histogram (Plant 6-7)

N = 353

,. I I ,, I I ,,,

0 20 40 60 80100120140
Stem Count

o

1

2

9

10

Cumulative Leaf Area (m2)

Shrub Area; 1.32 m2

UN = 5.17

01234567
Leaf Area (m2)

Figure 3. Stem diameter, leaf area relationship. An example calculation is shown for Plant 6-7.

3,3 AVIRIS Processing
An alternate approac~ based off of multitemporal AVIRIS data was used to determine whether

changes in canopy liquid water matched expected patterns in leaf area development as stands aged. In order
to test this hypothesis, five AVJRIS scenes were analyzed over the study site, acquired primarily within a
seasonal window tier fill leaf area development in early June and prior to senescence in October. Data
sets acquired during this window included September 22, 1994, June 12 and August 18, 1996 and July 23
1997. A late season data set, acquired on October 18, 1995, showed early signs of senescence in most of the
clones.

Once acquired. reflectance was retrieved and liquid water and water vapor mapped for each scene
using the modified Modtran-2 radiative-transfer approach described by Green et al., (1993) and Roberts et
al. (1997). Field spectral data from two bare soil transects measured in 1997 were used to correct for
radiomctric i~ndwmdcngth discrepancies between AVIRIS and modtran. Aficr correcting the 1997 data, a



temporally irwariant t~get ~,as located in me scene and used to improve reflectance retrieval for the
remaining scenes from 1994, Iggs and 1996. Esample spectra for Aug 12, 1996 are shown in Figure 2,

4 Results

4,1 Field Study
LAI for the 25 study plants ranged between 1.8 for one of the smallest shrubs to 8.75 for one of

the largest, with most of the shrubs ranging between 4 and 6,5 (Fig, 4). Liquid water fits ranged between
0.05 and 0,38 cm in the 1002-1068 nm region and 0.025 and 0.23 cm in the 1132-1200 nm region. Lower
liquid water estimates at tie longer wavelength are consistent with the fact that the 1132-1200 run water
band is a stronger absorption feature and thus scattered NIR light will penetrate to a shallower depth within
the crown, When plotted against liquid water, estimated from the spectral daq LAI and liquid water
proved to have a positive, linear relationship with ~ values of 0.646 and 0.721 in the 1002-1068 and 1132-
1200 run liquid water absorption wig. 4). Differences in the slopes of these linear relationships can also be
attribu~ed to the greater strength of the 1132-1200 run water band.

‘he validity of the LAI-liquid water relationship is suppor&edby analysis using more standard
approa~hes such as the NDVI (NIR-red)/(lJIR+red) and VI (NllUred). For example, the plot of NDVI
against LAI demonstrates that the NDVI becomes progressively more asymptotic with increasing L~
matching most published obsemations. The VI, in contrast, shows a much more linear relationship,
showing only slightly lower fits than liquid water. In both cases, liquid water provides the superior estimate
and shows a linear relationship even to the highest vahte observed in the shrubs.

4.2 AVIRISMultitemporal Study
Based on prior work with the clonal Populus,leaf area would be ex~ected to reach peak

development in June, sustain a high level throughout the summer, then begin to senesce in the Fall, during
October. As a result, with the exception of the 1995 da@ differences in LAI obsexved from 1994 to 1997
should be a product of long term differences in stand age, not phonological changes. Between 1994 and
1997, stand age varied between less than one year to over six years. Over this period of time, LAI would be
expected to show yearly increases for the first three years, followed by slight declines over the remaining
three years (Heilman et al., 1996),

In order to test whether the expected patterns were obsemed in liquid water, four stands (plus
replicates) were located in the study site, two stands that were originally planted in 1992 and two planted

duringApril, 1994.In order to determinewhetherleaf angleshad an impacton the liquid water retrievals,
stands were selectedboth fromthe clonewith more horizontallyorientedleaves,TXD and the more
verticallyoriented DxN, Temporalpatternsin liquid waterwerealso comparedto the NDVI, to determine
whether similarpatterns wereobservedin that measure.

Temporal analysis of the olderstands (Fig. 5, top left) demonstratedfew changes in liquid water
tlom 1994to 1997,The only major temporalchangewas obsemedin 1995,in which the TxD showeda
markeddecreasein liquid waterand the DxN a slightly lower decrease, attributed to late season senescence
and a loss of leaf area. In all cases, the T.xDshowed a slightly lower liquid water than the DXN, which can

. be attributed to either lower leaf area, or the effect of differences in leaf angles. In comparison the NDVI
showed little temporal variation (Fig, 5, row 2). Calculation of liquid water directly from AVIR.IS
reflectance, using the same program used for the field data, yielded similar results to those produced from
the reflectance retrieval. Comparison of field data to AVIRIS spectra demonstrated higher liquid water
estimates for M stands relative to small shrubs, equal to close to 1 mm of water.

Analysis of changes in liquid water in the younger stands demonstrated a uniform increase in
liquid water over the first three years, followed by a slight decline in the fourth year (Fig. 5, top right).
Unlike observations in the older stands, NDVI showed marked changes, dramatically increasing in the first
two years followed by little change in the third year. The VI was not calculated because it proved too
sensitive to minor atmospheric correction problems in the red wavelengths.

Patterns in the liquid wdter matched expected patterns based on stand age and seasonality. In
comparison, the NDVI shows little variation except in very young stands.
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50t) Summary

In this study we tested the hypothesis that LAI is linearly related to liquid waler. There were hvo
components of the study. a field study using reflectance measurements of Populusshrubs which were
hamested to determine LAI and a temporal study of AWJ21S data that tracked changes in liquid water as
stands aged over a four year period. The field study demonstrated that LAI and liquid water are linearly
correlated up to LAI 8.75. In compariso~ the NDVI/LAl relationship showed the expected asymptotic
relationship which saturated near an LAI of 3.0. The VI showed a surprisingly good linear relationship.

AVIR.IS analysis showed temporal patterns in the liquid water which matched expected patterns
based on stand age and seasonality. In this instances, the only si~lcant pattern in the older stands was due
to senescence in the October. 1995 data set, In the younger stands, liquid water increased for the first three
years followed by a decline in the fourth year. In compassion, the NDVI showed little variation except in
very young stands,

These results suggest that liquid water retrieved from AVIRIS may forma new, potentially
powerful technique for mapping stand structure. However, there remain several important research
dire~ons that should be pursued. These include sensitivity analysis to determine how relationship varies
betweeq very different types of vegetation (e.g. shrubs, conifers) and how it varies seasonally with water
status (as in chaparral). F@ermore, methods should be explored that avoid the use of correlative
relationships between field data and remotely sensed measures of liquid water.
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